Polymer Bulletin 55, 243–250 (2005) DOI 10.1007/s00289-005-0434-x

Oxidative coupling polymerization of racemic 3,3' dihydroxy-2,2'-dimethoxy-1,1'-binaphthalene with copper(II)-(-)-sparteine complex

Shigeki Habaue (), Kazutaka Ishikawa

Department of Chemistry and Chemical Engineering, Faculty of Engineering, Yamagata University, Yonezawa 992-8510, Japan

Received: 20 May 2005 / Revised version: 9 August 2005 / Accepted: 9 August 2005 Published online: 30 August 2005 – © Springer-Verlag 2005

Summary

The oxidative coupling polymerization of racemic 3,3'-dihydroxy-2,2'-dimethoxy-1,1'-binaphthalene with copper(II) chloride-(-)-sparteine [(-)Sp] in methanol at room temperature was carried out and the enantiomer-selectivity during the polymerization was examined. The (*R*)-monomer preferentially reacted, and the purity of the unreacted monomer reached 80%*ee* (*S*) after 15 h, while that of the polymerized monomer gradually decreased from 26%*ee* (R) as a function of the polymerization. The ratio of the rate constants of both enantiomers, $s = k_R/k_s$, was determined to be 2.3. The model coupling reaction of the mono-benzylated (*R*)-monomer with CuCl2-(-)Sp showed that the *R*-configuration with respect to the carbon-carbon bonds between the monomer units was selectively constructed during the polymerization.

Introduction

Recently, we reported the asymmetric oxidative coupling polymerization (AOCP) of the optically active 3,3'-dihydroxy-2,2'-dimethoxy-1,1'-binaphthalene (HMBN) or 2,3-dihydroxynaphthalene (DHN) using copper catalysts that produced poly(2,3 dihydroxy-1,4-naphthylene) derivatives, which are novel types of polyarylenes bearing a rigid main chain with continuous axial dissymmetry, therefore, of great interest as a functional polymeric material (Scheme 1) [1-5]. The stereoselectivity of the newly formed carbon-carbon bonds $(\underline{R} : \underline{S})$ during the polymerization of (\underline{R}) - or (*S*)-HMBN significantly depends on the structure of the chiral diamine-type ligands. The polymerization with bisoxazoline, (*S*)- or (*R*)-2,2'-isopropylidenebis(4-phenyl-2 oxazoline) (Phbox) proceeds under an almost complete ligand stereochemical control, that is, the polymer with an *S*- or *R*-selectivity regardless of the monomer chirality was obtained by the polymerization with (*S*)- or (*R*)-Phbox, respectively. On the other hand, the monomer chirality significantly affected the stereoselectivity during the polymerization with chiral diamine ligands, such as (+)-1-(2-pyrrolidinylmethyl)pyrrolidine [(+)PMP] [6,7] and (-)-sparteine [(-)Sp] [8,9] (Scheme 2), which are well known as effective reagents for the oxidative coupling reaction leading to a 1,1'-bi-2-naphthol skeleton, and a clear match/mismatch effect between the monomer and the diamine was observed [1,2]. For example, the polymerization of (R) - or (S) -HMBN with CuCl₂-(-)Sp gave a polymer with the stereoselectivity of the

Scheme 1.

newly constructed bonds between the monomer units, $R : S = 84 : 16$ or 52 : 48, respectively.

Enantiomer- or asymmetric-selective polymerization, in which one enantiomer of a racemic monomer is preferentially polymerized by a chiral initiator, is attractive as a process affording a kinetically resolved monomeric compound, as well as an optically active polymer. Many studies on the enantiomer-selective chain-type polymerization of cyclic and vinyl monomers, such as the oxiranes, thiiranes, lactones, lactide, α-olefins, and (meth)acrylates, are available [10-20]. To the best of our knowledge, there are few reports on the enantiomer-selectivity during the successive homo-polymerization, in contrast to that through the chain polymerization mechanisms. In addition, the kinetic resolution method for 1,1'-bi-2-naphthol derivatives through enantiomer-differentiating reactions with chiral reagents or catalysts, even including the enzymatic ones, is unexpectedly limited [21-26].

Scheme 2.

In this study, the oxidative coupling polymerization of racemic HMBN with chiral copper-diamine catalysts was carried out, and the enantiomer-selectivity during the polymerization was investigated (Scheme 3). To discriminate the stereochemistry between the enantiomer-selectivity and stereoselectivity of the carbon-carbon bonds generated by the coupling reaction, the underlined absolute configurations, *R* and *S*, are used for describing the latter stereochemistry in this study.

Scheme 3.

Experimental

Materials

The monomer HMBN, reagents, and solvents used in the polymerization were synthesized or purchased as previously reported [1-4].

Polymerization

The HMBN monomer was added to a mixture of CuCl₂ and $(-)$ Sp ([HMBN] = 0.16 M, $[Cu(II)]/[(-)Sp]/[HMBN] = 1/2/1)$ in MeOH. During the polymerization at room temperature under an N_2 atmosphere, small portions of the reaction mixture were removed using a syringe. Each reaction mixture was poured into a large excess of MeOH-1N HCl $[10/1 (v/v)]$. The insoluble fraction was collected by centrifugation and drying in vacuo. The obtained polymer was further acetylated using an excess amount of acetyl chloride and pyridine (5 equiv.) in $CH₂Cl₂$ to measure the molecular weights and optical properties. The ratio of acetylation was over 88%. After evaporation of the solvents, the MeOH-1N HCl-soluble part was further extracted with 1N HCl and CHCl₃. The residual monomer was isolated by silica gel column chromatography (hexane/AcOEt/CHCl₃ = $3/1/1$), and the enantiomer excess (*ee*) was determined by high-performance-liquid-chromatography (HPLC) [column: Daicel Chiralpak AD-H, eluent: hexane/ethanol = $45/55$ (v/v), flow rate = 0.5 ml/min].

Measurements

The ${}^{1}H$ and ${}^{13}C$ NMR spectra were measured using a Varian Unity-Inova spectrometer $(500 \text{ MHz for } {}^{1}\text{H})$ in CDCl₃. The size exclusion chromatographic (SEC) analyses were

Table 1. OCP of *rac*-HMBN with various copper reagents at room temperature $([CuCl]/[ligand]/[HMBN] = 0.16/0.20/1, [HMBN] = 0.16 M, solvent = THF, O₂ atmosphere)$

		Monomer		Polymer			
	Time	Recovery	ee	Yield	ee	$M_{\rm n}$ (x 10 ³)	$[\alpha]_{D}$ ¹
Reagent	(h)	$(\%)^a$	$(\%)^{\mathsf{b}}$	$(\%)^c$	$(\%)^d$	$(M_w/M_n)^e$	
$CuCl-(S)Phbox$	0.5	3	26(R)	53	1(S)	9.8(1.3)	-92
$CuCl-(+)PMPg$	2	27	17 (S)	10	7(R)	8.7(1.3)	$+21$
$CuCl2(-)Sph$		42	36(S)	16	26(R)	11.9(1.3)	$+186$

^aisolated value; ^bdetermined by HPLC; ^cMeOH-1N HCl (10/1 (v/v))-insoluble part of poly(HMBN); dcalculated value for the reacted monomer; determined by SEC using the polymer after acetylation (MeOH-1N HCl $(10/1 (v/v))$ -insoluble part); ^fmeasured in CHCl₃ using the acetylated polymer; g solvent = CH₂Cl₂; h [CuCl₂]/[(-)Sp]/[HMBN] = 1/2/1, $[HMBN] = 0.16 M$, solvent = MeOH, N_2 atmosphere

performed using a Hitachi 655A-11 equipped with a Shimadzu SPD-6A UV detector and TSK G5000H and Shodex AC-802.5 columns connected in series (eluent: CHCl₃, temp. = 40 °C, flow rate = 1.0 ml/min). Calibration was carried out using standard polystyrenes. Circular dichroism (CD) spectra were recorded using a JASCO J-720L apparatus. The optical rotation was measured using a JASCO P-1010 polarimeter in CHCl₃ at 25 °C. The HPLC analyses were performed on a JASCO 986-PU chromatograph equipped with an UV (JASCO 970-UV) detector at room temperature.

Results and discussion

Table 1 shows the results of the polymerization of *rac*-HMBN with chiral copper complexes at room temperature. The polymerization with the CuCl-(*S*)Phbox catalyst proceeded quite fast. Even after a 0.5 h polymerization, a 3% monomer was recovered. On the other hand, a relatively slower polymerization was observed for the (+)PMP and (-)Sp systems, and the unreacted monomer during the polymerization with $CuCl₂(-)Sp$ showed the higher *ee* value of 36% (*S*), when the monomer conversion was 58%. Accordingly, the polymerized monomer *ee* was calculated to be 26% (*R*). The obtained polymer after acetylation of the hydroxyl groups [poly(HMBN')] showed a specific rotation ($[\alpha]_D$) of +186, whose value was almost comparable to that of the polymer obtained from (R) -HMBN using CuCl₂-(-)Sp $(\lceil \alpha \rceil_{\text{D}} = +185)$ [1], suggesting that the stereochemistry of the carbon-carbon bonds formed by the coupling reaction should also be controlled, in addition to the *R*-isomerselectivity of the polymerization system. In contrast, the $[\alpha]_D$ value of the polymer obtained with CuCl-(+)PMP, +21, is much smaller than that of poly[(*R*)-HMBN'] $([\alpha]_D = +157)$ [12]. These results indicate that the CuCl₂-(-)Sp system is suitable for further investigation of the enantiomer-selectivity during the AOCP.

Table 2. OCP of *rac*-HMBN with CuCl₂-(-)Sp at room temperature ([CuCl₂]/[(-)Sp]/[HMBN] = $1/2/1$, [HMBN] = 0.16 M, solvent = MeOH, N_2 atmosphere)

Monomer			Polymer			
Time (h)	Recovery $(\%)^{\rm a}$	ee $(\%)^{\mathrm{b}}$	Yield $(\%)^c$	ee $(\%)^d$	$M_{\rm n}$ (x 10 ⁴) $(M_{\rm w}/M_{\rm n})^{\rm e}$	
$\overline{2}$	32	36(S)	19	17(R)	1.19(1.3)	
3	23	39(S)	19	12(R)	1.19(1.3)	
5	14	49 (S)	19	8(R)	1.13(1.3)	
7	14	61 (S)	23	10(R)	1.18(1.3)	
15	4	80(S)	42	4(R)	1.08(1.3)	
24	2	68 (S)	77	2(R)	1.05(1.6)	

^aisolated value; ^bdetermined by HPLC; ^cMeOH-1N HCl (10/1 (v/v))-insoluble part; ^dcalculated value for the reacted monomer; ^edetermined using the polymer after acetylation (MeOH-1N HCl (10/1 (v/v))-insoluble part) by SEC

Table 2 lists the results of a polymerization run with $CuCl₂-(-)Sp$ for 24 h and changes in the monomer conversion, monomer *ee*, polymer yield of the methanol-1N HCl (10/1 (v/v))-insoluble fraction, and calculated *ee* values for the monomer unit from the residual monomer *ee* as a function of the polymerization time are demonstrated in Figure 1. The monomer conversion and polymer yield increased with time and reached almost 100% and 77%, respectively, after 24 h. The purity of the unreacted

246

Figure 1. Monomer conversion, *ee* (*S*) of the residual monomer, polymer yield, and calculated *ee* (*R*) of the monomer units as a function of polymerization time (monomer: *rac*-HMBN; catalyst: $CuCl₂(-)Sp)$

monomer reached 80%*ee* (*S*) after 15 h, while that of the polymerized monomer gradually decreased from 26%*ee* (*R*) with the increasing degree of polymerization.

The (*R*)-monomer preferentially reacted in this polymerization system. The ratio of the rate constants of both enantiomers, $s = k_R/k_S$, was determined to be 2.3, based on the observed values for the 1 h polymerization [15,17]. Figure 2 shows the plots of the measured *ee* values for the residual monomer (*S*) and the monomer unit introduced into the polymer chain (*R*) versus the monomer conversion, together with the theoretical values calculated on the basis of the s value of 2.3 for the monomer conversion of 50% or below. The polymers consisting of approximately 40%*ee* of the monomeric units during the initial stage of the polymerization and 28%*ee* at the halfreaction (50% conversion) may be produced during the polymerization.

As the purity of the reacted monomer decreased, the specific rotation observed for poly(HMBN') gradually decreased from +186 to +68 (Figure 3). The CD spectra of the obtained polymers are shown in Figure 4. The absorption intensity around 240 nm

Figure 2. Monomer conversion vs. *ee* values of the residual monomer and calculated *ee* values for the monomer unit (monomer: rac -HMBN; catalyst: CuCl₂-(-)Sp)

Figure 3. Plots of the specific rotation of poly(HMBN') obtained with $CuCl₂(-)Sp$ (in CHCl₃)

showed a good relation to the $[\alpha]_D$ values and the spectral patterns indicated that these polymers are rich in the *R*-configuration [1-4].

Figure 5 shows the 13 C NMR spectrum of poly(HMBN') obtained by the 15 h polymerization, and each peak is assigned as shown in the figure. Although the stereochemistry of the newly constructed carbon-carbon bonds $(R : S)$ during the polymerization of the optically active HMBN can be estimated from the methyl carbon absorption of the acetyl groups, as previously reported [1,2], the stereochemistry cannot be directly determined here because the racemic monomer was used. The 1 : 1 absorption is always observed for the "-*RRS*-" and "-*SSR*-" chains [1], therefore, the selectivity was estimated to be $[RRR + SSS + 1/2(RRS + SSR)]$: $[SRS +$ $R\overline{SR} + 1/2(R\overline{RS} + S\overline{SR}) = 63 : 37$ from the absorption intensity. This result indicates that the (*RRR*)- and/or (*SSS*)-dimer units should be selectively constructed during the polymerization.

The model coupling reaction of the mono-benzylated monomer, BnHMBN, with $CuCl₂(-)Sp$ in methanol at room temperature for 2 h was conducted ([BnHMBN] = 0.16 M, $[\text{BnHMBN}]/[\text{CuCl}_2]/[-]\text{Sp}] = 1/2/1$ (Scheme 4) [27,28]. The coupling

Figure 4. CD spectra of poly(HMBN') obtained with CuCl₂-(-)Sp, polymerization time: (a) 1 h; (b) 3 h; (c) 15 h; (d) 24 h (in CHCl₃)

Scheme 4.

reaction of (*R*)-BnHMBN gave a mixture of the (*RRR*)- and (*RSR*)-isomers in 36% and 16% yields, respectively, whereas the coupling product was obtained in 31% yield $(SSS : SRS = 99 : 1)$ for the reaction of (S) -BnHMBN. Accordingly, the coupling reaction of (*R*)-BnHMBN proceeded much faster than that of the (*S*)-isomer, and the (*RRR*)-quaternaphthyl structure was preferentially formed during the reaction. These results are very consistent with those observed for the polymerization of *rac*-HMBN. On the other hand, the observed setereoselectivity (\underline{R} : \underline{S} = 69 : 31) for the model coupling of (*R*)-BnHMBN showed a tendency similar to that estimated for the polymer synthesized from (*R*)-HMBN (84 : 16), while that for the reaction of (*S*)- BnHMBN is quite different from the evaluated selectivity for the 24 h polymerization of the (*S*)-monomer (52 : 48) [1]. It is known that the deracemization of the 1,1'-bi-2 naphthol derivatives is caused by the $CuCl₂(-)Sp$ complex [8,9,29]. Accordingly, this may be due to the fact that the epimerization of the formed 1,1'-bi-2-naphthol units during the coupling process takes place.

Figure 5.¹³C NMR spectrum of poly(HMBN') obtained by the polymerization for 15 h (CDCl₃, 60° C)

Conclusions

During the asymmetric oxidative coupling polymerization of the racemic monomer, HMBN, with $CuCl₂(-)Sp$, the (R) -monomer was preferentially incorporated into the polymer chain, and the purity of the residual monomer attained 80%*ee* (*S*) after 15 h. In addition, the *R*-configuration was selectively produced that afforded the *RRR*mainchain-structure.

Acknowledgements. This work was partially supported by SHISEIDO Grant for Scientific Research and Grant-in-Aid for Scientific Research (No. 15350066) from the Ministry of Education, Science, Sports, and Culture of Japan.

References

- 1. Habaue S, Seko T, Okamoto Y (2002) Macromolecules 35:2437
- 2. Habaue S, Seko T, Isonaga M, Ajiro T, Okamoto Y (2003) Polym J 35:592
- Habaue S, Seko T, Okamoto Y (2003) Polymer 44:7377
- 4. Habaue S, Ajiro H, Yoshii Y, Hirasa T (2004) J Polym Sci A Polym Chem 42:4528
- 5. The AOCP of 6,6'-dihydroxy-2,2'-binaphthol derivative was also reported: Xie X, Phuan P-W, Kozlowski MC (2003) Angew Chem Int Ed 42:2168
- 6. Nakajima M, Miyoshi I, Kanayama K, Hashimoto S, Noji M, Koga K (1999) J Org Chem 64:2264
- 7. Nakajima M, Kanayama K, Miyoshi I, Hashimoto S (1995) Tetrahedron Lett 36:9519
- 8. Smrčina M, Poláková J, Vyskočil Š, Kočovský P (1993) J Org Chem 58:4534
- 9. Smrčina M, Lorenc M, Hanuš V, Sedmera P, Kočovský P (1992) J Org Chem 57:1917
- 10. Okamoto Y, Nakano, T (1994) Chem Rev 94:349
- 11. Spassky N (1992) Makromol Chem Macromol Symp 53:367
- 12. Okamoto Y, Yashima E (1990) Prog Polym Sci 15:263
- 13. Tsuruta T (1972) J Polym Sci D 6:179
- 14. Pino P (1965) Adv Polym Sci 4:393
- 15. Baar CR, Levy CJ, Min EY-J, Henling LM, Day MW, Bercaw JE (2004) J Am Chem Soc 126:8216
- 16. Tsuji M, Aoki T, Sakai R, Satoh T, Kaga H, Kakuchi T (2004) J Polym Sci A Polym Chem 42:4563
- 17. Spassky N, Wisniewski M, Pluta C, Borgne AL (1996) Macromol Chem Phys 197:2627
- 18. Chien JCW, Vizzini JC, Kaminsky W (1992) Makromol Chem Rapid Commun 13:479
- 19. Sepulchre M, Spassky N, Mark C, Schurig V (1981) Makromol Chem Rapid Commun 2:261
- 20. Okamoto Y, Ohta K, Yuki H (1978) Macromolecules 11:724
- 21. Putala M (1999) Enantiomer 4:243
- 22. Juárez-Hernandez M, Johnson DV, Holland HL, McNulty J, Capretta A (2003) Tetrahedron Asymmetry 14:289
- 23. Kazlauskas RJ (1989) J Am Chem Soc 111:4953
- 24. Wu S-H, Zhang L-Q, Chen C-S, Girdaukas G, Sih CJ (1985) Tetrahedron Lett 26:4323
- 25. Fujimoto Y, Iwadate H, Ikekawa N (1985) J Chem Soc Chem Commun 1333
- 26. Blum J, Gelman D, Aizenshtat Z, Wernik S, Schumann H (1998) Tetrahedron Lett 39:5611
- 27. Tsubaki K, Miura M, Morikawa H, Tanaka H, Kawabata T, Furuta T, Tanaka K, Fuji K (2003) J Am Chem Soc 125:16200
- 28. Tanaka K, Furuta T, Fuji K, Miwa Y, Taga T (1996) Tetrahedron Asymmetry 7:2199
- 29. Zhang Y, Yeung S-M, Wu H, Heller DP, Wu C, Wulff WD (2003) Org Lett 5:1813

250